

MUTAH UNIVERSITY Faculty of Engineering Department of Electrical Engineering

Course Syllabus

Course Code	Course Name	Credits	Contact Hours
0401200	Engineering Analysis	3	11:00 -12:30 Monday, Wednesday

INSTRUCTOR/COORDINATOR			
Name	Dr. Aser M. Matarneh		
Email/Office	Aser.matarneh@mutah.edu.jo		
Office Hours	12:00 -2:00 Sunday, Tuesday		
Classroom/Time	11:00 -12:30 Monday, Wednesday		

TEXTBOOK		
Title	Title Elements of Electromagnetics	
Author/Year/Edition Matthew N. O. Sadiku.		
Other Supplemental Materials		
Title	Advanced Engineering Mathematics	
Author/Year/Edition	Erwin Kreyszig, Wiley (Chapters: 7-12)	

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

This course covers:

- Complex Numbers: definition, algebraic operation, properties. Involves the investigation and understanding of the imaginary numbers to appreciate mathematics in the real world and is used in physics, engineering, and statistics.
- Representations of coordinate systems and conversion between them, space curves and surfaces, vector integral and analysis and some applications.
- Vector calculus such as gradient, divergence and curl including second order differential operator will be taught.
- Some useful theorems such as stoke, and divergence theorems will be covered.

B. Pre-requisites (P) or Co-requisites (C)

Ordinary Differential Equations (1) (0301203) (P)

C. Course Type (Required or Elective)

Required

SPECIFIC GOALS

A. Course Learning Objectives (CLOs)

<u>CLO1</u>: Understand the complex numbers and their properties [1].

<u>CLO2</u>: Understand the coordinate systems and conversion between them [1].

<u>CLO3</u>: Recognize vector integrals [1].

<u>CLO4</u>: Demonstrate vector calculus [1].

CLO5: Demonstrate Divergence Theorem and Stoke's Theorem and their applications [1].

B. Student Learning Outcomes (SOs) Addressed by the Course

1	2	3	4	5	6	7
\checkmark						

BRIEF LIST OF TOPICS TO BE COVERED

List of Topics	No. of Weeks	Contact Hours
Introduction	1	3
 Complex numbers: Arithmetic of complex numbers Algebraic Operations with Complex Numbers Conjugate of Complex Number Euler's formula Properties Representations of complex numbers Polar Form of a Complex Number 	3	9
 Coordinate systems and conversions between them Cartesian Cylindrical Spherical Conversion between coordinate systems 	3	9
 Vector Integrals Line, surface, and triple integrals involves vectors 	2	6
 Vector Calculus First order differential operator. Gradient, Divergence, and Curl Second order operator 	2	6
Divergence TheoremStoke's Theorem	2	6

Final Exam	
• Revision 1 3	

EVALUATION				
Assessment Tool	Due Date	Weight (%)		
Mid Exam	According to the university calendar	30		
Course Work (Homeworks, Quizzes,Projects,etc.)	One week after being assigned	20		
ABET's Students Learning Outcomes (Criterion # 3)				
	calendar			

	Rela	tionship to program outcomes
ABET 1-7		Engineering Student Outcomes
1.		an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2.		an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social,environmental, and economic
3.		ability to communicate effectively with a range of audiences
4.		an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions global, economic, environmental, and societal contexts
5.		an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6.		an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

7.	an ability to acquire and apply new knowledge as needed, using appropriate
	learning
	strategies